Unconventional aspects of electronic transport in delafossite oxides

نویسندگان

  • Ramzy Daou
  • Raymond Frésard
  • Volker Eyert
  • Sylvie Hébert
  • Antoine Maignan
چکیده

The electronic transport properties of the delafossite oxides [Formula: see text] are usually understood in terms of two well-separated entities, namely the triangular [Formula: see text] and ([Formula: see text] layers. Here, we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on [Formula: see text] and [Formula: see text], which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals [Formula: see text], [Formula: see text], and [Formula: see text], where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymorph engineering of CuMO2 (M = Al, Ga, Sc, Y) semiconductors for solar energy applications: from delafossite to wurtzite

The cuprous oxide based ternary delafossite semiconductors have been well studied in the context of p-type transparent conducting oxides. CuAlO2, CuGaO2 and CuInO2 represent a homologous series where the electronic properties can be tuned over a large range. The optical transparency of these materials has been associated with dipole forbidden transitions, which are related to the linear O-Cu-O ...

متن کامل

Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides.

We use hybrid functionals and restricted self-consistent GW, state-of-the-art theoretical approaches for quasiparticle band structures, to study the electronic states of delafossite Cu(Al,In)O2, the first p-type and bipolar transparent conductive oxides. We show that a self-consistent GW approximation gives remarkably wider band gaps than all the other approaches used so far. Accounting for pol...

متن کامل

Understanding conductivity anomalies in Cu(I)-based delafossite transparent conducting oxides: Theoretical insights.

The Cu(I)-based delafossite structure, Cu(I)M(III)O(2), can accommodate a wide range of rare earth and transition metal cations on the M(III) site. Substitutional doping of divalent ions for these trivalent metals is known to produce higher p-type conductivity than that occurring in the undoped materials. However, an explanation of the conductivity anomalies observed in these p-type materials, ...

متن کامل

Nearly free electrons in a 5d delafossite oxide metal

Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit-assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite ox...

متن کامل

Point defects and transport mechanisms in transparent conducting oxides of intermediate conductivity

The layered delafossite structure p-type transparent conducting oxides (TCOs) and the mayenite cage-structure n-type transparent conducting oxides represent enabling materials for novel technological applications. In the present work, isovalent replacement of the delafossite B-site cation (i.e., B=Sc and Y for Al in CuBO2) and isovalent substitution of the mayenite Ca-cations by Mg in C12A7 (12...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017